Lefschetz pencils and mapping class groups

نویسنده

  • S. K. Donaldson
چکیده

Holomorphic maps between complex manifolds have many properties which distinguish them among general smooth maps. Consider, for example, the case of a map between Riemann surfaces. A holomorphic map is represented locally, in suitable co-ordinates, by one of the models z 7→ z for k ≥ 0. These models are very different from the models of generic smooth maps between surfaces, which are, in addition to the points where the map is a local diffeomorphism, folds and cusps. It is interesting to see what happens if we perturb the holomorphic map z 7→ z by a small non-holomorphic term. So for > 0 we define f ( ) : C → C by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Higher Homotopy Groups of Pencils

We consider a large, convenient enough class of pencils on singular complex spaces. By introducing variation maps in homotopy, we prove in a synthetic manner a general Zariski-van Kampen type result for higher homotopy groups, which in homology is known as the “second Lefschetz theorem”.

متن کامل

The Zariski-lefschetz Principle for Higher Homotopy Groups of Nongeneric Pencils

We prove a general Zariski-van Kampen-Lefschetz type theorem for higher homotopy groups of generic and nongeneric pencils on singular open complex spaces.

متن کامل

Homotopy Variation and Nongeneric Pencils

We construct a variation map on homotopy groups associated to a pencil with isolated stratified singularities on a singular space. As application, we prove a far reaching Zariski-van Kampen-Lefschetz type theorem, for higher homotopy groups of nongeneric pencils on singular (open) complex spaces.

متن کامل

Lefschetz pencils and the canonical class for symplectic 4-manifolds

We present a new proof of a result due to Taubes: if (X,ω) is a closed symplectic four-manifold with b+(X) > 1 + b1(X) and λ[ω] ∈ H (X;Q) for some λ ∈ R, then the Poincaré dual of KX may be represented by an embedded symplectic submanifold. The result builds on the existence of Lefschetz pencils on symplectic four-manifolds. We approach the topological problem of constructing submanifolds with ...

متن کامل

Lefschetz pencils and divisors in moduli space

We study Lefschetz pencils on symplectic four-manifolds via the associated spheres in the moduli spaces of curves, and in particular their intersections with certain natural divisors. An invariant defined from such intersection numbers can distinguish manifolds with torsion first Chern class. We prove that pencils of large degree always give spheres which behave “homologically” like rational cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004